Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.242
Filtrar
1.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654646

RESUMO

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Assuntos
Fósseis , Filogenia , Tubarões , Animais , Fósseis/anatomia & histologia , México , Tubarões/anatomia & histologia , Tubarões/classificação , Tubarões/fisiologia , Evolução Biológica , Dente/anatomia & histologia
2.
Curr Biol ; 34(8): 1755-1761.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521061

RESUMO

All ∼14,000 extant ant species descended from the same common ancestor, which lived ∼140-120 million years ago (Ma).1,2 While modern ants began to diversify in the Cretaceous, recent fossil evidence has demonstrated that older lineages concomitantly occupied the same ancient ecosystems.3 These early-diverging ant lineages, or stem ants, left no modern descendants; however, they dominated the fossil record throughout the Cretaceous until their ultimate extinction sometime around the K-Pg boundary. Even as stem ant lineages appear to be diverse and abundant throughout the Cretaceous, the extent of their longevity in the fossil record and circumstances contributing to their extinction remain unknown.3 Here we report the youngest stem ants, preserved in ∼77 Ma Cretaceous amber from North Carolina, which illustrate unexpected morphological stability and lineage persistence in this enigmatic group, rivaling the longevity of contemporary ants. Through phylogenetic reconstruction and morphometric analyses, we find evidence that total taxic turnover in ants was not accompanied by a fundamental morphological shift, in contrast to other analogous stem extinctions such as theropod dinosaurs. While stem taxa showed broad morphological variation, high-density ant morphospace remained relatively constant through the last 100 million years, detailing a parallel, but temporally staggered, evolutionary history of modern and stem ants.


Assuntos
Âmbar , Formigas , Evolução Biológica , Fósseis , Filogenia , Animais , Formigas/fisiologia , Formigas/anatomia & histologia , Formigas/classificação , Fósseis/anatomia & histologia , North Carolina , Extinção Biológica
3.
Curr Biol ; 34(8): 1762-1771.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521062

RESUMO

Amber preserves an exceptional record of tiny, soft-bodied organisms and chemical environmental signatures, elucidating the evolution of arthropod lineages and the diversity, ecology, and biogeochemistry of ancient ecosystems. However, globally, fossiliferous amber deposits are rare in the latest Cretaceous and surrounding the Cretaceous-Paleogene (K-Pg) mass extinction.1,2,3,4,5 This faunal gap limits our understanding of arthropod diversity and survival across the extinction boundary.2,6 Contrasting hypotheses propose that arthropods were either relatively unaffected by the K-Pg extinction or experienced a steady decline in diversity before the extinction event followed by rapid diversification in the Cenozoic.2,6 These hypotheses are primarily based on arthropod feeding traces on fossil leaves and time-calibrated molecular phylogenies, not direct observation of the fossil record.2,7 Here, we report a diverse amber assemblage from the Late Cretaceous (67.04 ± 0.16 Ma) of the Big Muddy Badlands, Canada. The new deposit fills a critical 16-million-year gap in the arthropod fossil record spanning the K-Pg mass extinction. Seven arthropod orders and at least 11 insect families have been recovered, making the Big Muddy amber deposit the most diverse arthropod assemblage near the K-Pg extinction. Amber chemistry and stable isotopes suggest the amber was produced by coniferous (Cupressaceae) trees in a subtropical swamp near remnants of the Western Interior Seaway. The unexpected abundance of ants from extant families and the virtual absence of arthropods from common, exclusively Cretaceous families suggests that Big Muddy amber may represent a yet unsampled Late Cretaceous environment and provides evidence of a faunal transition before the end of the Cretaceous.


Assuntos
Âmbar , Artrópodes , Extinção Biológica , Fósseis , Fósseis/anatomia & histologia , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Evolução Biológica , Biodiversidade , Canadá
4.
Curr Biol ; 34(8): 1794-1800.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38552627

RESUMO

Extant baleen whales (Mysticeti) uniquely use keratinous baleen for filter-feeding and lack dentition, but the fossil record clearly shows that "toothed" baleen whales first appeared in the Late Eocene.1 Globally, only two Eocene mysticetes have been found, and both are from the Southern Hemisphere: Mystacodon selenensis from Peru, 36.4 mega-annum (Ma) ago1,2 and Llanocetus denticrenatus from Antarctica, 34.2 Ma ago.3,4 Based on a partial skull from the lower part of the Lincoln Creek Formation in Washington State, USA, we describe the Northern Hemisphere's geochronologically earliest mysticete, Fucaia humilis sp. nov. Geology, biostratigraphy, and magnetostratigraphy places Fucaia humilis sp. nov. in the latest Eocene (ca. 34.5 Ma ago, near the Eocene/Oligocene transition at 33.9 Ma ago), approximately coeval with the oldest record of fossil kelps, also in the northeastern Pacific.5 This observation leads to our hypothesis that the origin and development of a relatively stable, nutrient-rich kelp ecosystem5,6 in the latest Eocene may have fostered the radiation of small-sized toothed mysticetes (Family Aetiocetidae) in the North Pacific basin, a stark contrast to the larger Llanocetidae (whether Mystacodon belongs to llanocetids or another independent clade remains unresolved) with the latest Eocene onset of the Antarctic Circumpolar Current in the Southern Hemisphere.7,8,9 Our discovery suggests that disparate mechanisms and ecological scenarios may have nurtured contrasting early mysticete evolutionary histories in the Northern and Southern hemispheres.


Assuntos
Fósseis , Baleias , Fósseis/anatomia & histologia , Animais , Baleias/anatomia & histologia , Baleias/fisiologia , Evolução Biológica , Crânio/anatomia & histologia , Washington
5.
PLoS One ; 18(10): e0292636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878550

RESUMO

For the first time, ophiuroids have been found in South African strata predating the lowermost Bokkeveld Group. These comprise natural moulds and casts from two localities in the 'upper unit' of the Baviaanskloof Formation (Table Mountain Group). As a Pragian to earliest Emsian age has been inferred for this member, the new taxa comprise the earliest high-palaeolatitude ophiuroid records from southern Gondwana. Morphological analysis of the specimens revealed the presence of two distinct taxa. One is here described as Krommaster spinosus gen. et sp. nov., a new encrinasterid characterised by very large spines on the dorsal side of the disc, the ventral interradial marginal plates and the arm midlines. The second taxon is a poorly preserved specimen of Hexuraster weitzi, a cheiropterasterid previously described from the slightly younger Bokkeveld Group.


Assuntos
Equinodermos , Fósseis , África do Sul , Equinodermos/classificação , Fósseis/anatomia & histologia
6.
PeerJ ; 11: e15776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671356

RESUMO

The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals.


Assuntos
Fósseis , Fenótipo , Répteis , Animais , Adaptação Fisiológica , Análise Multivariada , Répteis/anatomia & histologia , Répteis/classificação , Fósseis/anatomia & histologia , Filogenia
7.
Zootaxa ; 5306(5): 595-598, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37518664

RESUMO

This paper describes a new species of the genus Burmadactylus Heads, 2009 (Tridactylidae: Dentridactylinae) from Burmese amber, namely: Burmadactylus tenuicerci sp. nov. This new species is similar to Burmadactylus grimaldi Heads, 2009, but differs from latter by mesotibia basally inflated and almost as long as mesofemur; the second segment of cercus distinctly slender; paraproctal lobe covered with sparse and slender setae, one of the setae near the apex distinct thick and long.


Assuntos
Fósseis , Ortópteros , Animais , Âmbar , Fósseis/anatomia & histologia , Mianmar , Ortópteros/anatomia & histologia , Ortópteros/classificação , Especificidade da Espécie
8.
PeerJ ; 11: e15512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483966

RESUMO

Metriorhynchids are marine crocodylomorphs found across Jurassic and Lower Cretaceous deposits of Europe and Central and South America. Despite being one of the oldest fossil families named in paleontology, the phylogenetic relationships within Metriorhynchidae have been subject to many revisions over the past 15 years. Herein, we describe a new metriorhynchid from the Kimmeridgian of Porrentruy, Switzerland. The material consists of a relatively complete, disarticulated skeleton preserving pieces of the skull, including the frontal, prefrontals, right postorbital, nasals, maxillae, right premaxillae and nearly the entire mandible, and many remains of the axial and appendicular skeleton such as cervical, dorsal, and caudal vertebrae, ribs, the left ischium, the right femur, and the right fibula. This new specimen is referred to the new species Torvoneustes jurensis sp. nov. as part of the large-bodied macrophagous tribe Geosaurini. Torvoneustes jurensis presents a unique combination of cranial and dental characters including a smooth cranium, a unique frontal shape, acute ziphodont teeth, an enamel ornamentation made of numerous apicobasal ridges shifting to small ridges forming an anastomosed pattern toward the apex of the crown and an enamel ornamentation touching the carina. The description of this new species allows to take a new look at the currently proposed evolutionary trends within the genus Torvoneustes and provides new information on the evolution of this clade.


Assuntos
Fósseis , Filogenia , Répteis , Fósseis/anatomia & histologia , Suíça , Répteis/anatomia & histologia , Répteis/classificação , Especificidade da Espécie , Osso e Ossos/anatomia & histologia , Animais
9.
PeerJ ; 11: e15576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377790

RESUMO

Odontocetes first appeared in the fossil record by the early Oligocene, and their early evolutionary history can provide clues as to how some of their unique adaptations, such as echolocation, evolved. Here, three new specimens from the early to late Oligocene Pysht Formation are described further increasing our understanding of the richness and diversity of early odontocetes, particularly for the North Pacific. Phylogenetic analysis shows that the new specimens are part of a more inclusive, redefined Simocetidae, which now includes Simocetus rayi, Olympicetus sp. 1, Olympicetus avitus, O. thalassodon sp. nov., and a large unnamed taxon (Simocetidae gen. et sp. A), all part of a North Pacific clade that represents one of the earliest diverging groups of odontocetes. Amongst these, Olympicetus thalassodon sp. nov. represents one of the best known simocetids, offering new information on the cranial and dental morphology of early odontocetes. Furthermore, the inclusion of CCNHM 1000, here considered to represent a neonate of Olympicetus sp., as part of the Simocetidae, suggests that members of this group may not have had the capability of ultrasonic hearing, at least during their early ontogenetic stages. Based on the new specimens, the dentition of simocetids is interpreted as being plesiomorphic, with a tooth count more akin to that of basilosaurids and early toothed mysticetes, while other features of the skull and hyoid suggest various forms of prey acquisition, including raptorial or combined feeding in Olympicetus spp., and suction feeding in Simocetus. Finally, body size estimates show that small to moderately large taxa are present in Simocetidae, with the largest taxon represented by Simocetidae gen. et sp. A with an estimated body length of 3 m, which places it as the largest known simocetid, and amongst the largest Oligocene odontocetes. The new specimens described here add to a growing list of Oligocene marine tetrapods from the North Pacific, further promoting faunistic comparisons across other contemporaneous and younger assemblages, that will allow for an improved understanding of the evolution of marine faunas in the region.


Assuntos
Cetáceos , Classificação , Fósseis , Baleias , Washington , Baleias/anatomia & histologia , Baleias/classificação , Cetáceos/anatomia & histologia , Cetáceos/classificação , Especificidade da Espécie , Fósseis/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Dente/anatomia & histologia
10.
Proc Biol Sci ; 290(1995): 20230160, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919426

RESUMO

Skeletal pneumaticity is a key feature of extant avian structure and biology, which first evolved among the non-flying archosaurian ancestors of birds. The widespread presence of air-filled bones across the postcranial skeleton is unique to birds among living vertebrates, but the true extent of skeletal pneumaticity has never been quantitatively investigated-hindering fundamental insights into the evolution of this key avian feature. Here, we use microCT scans of fresh, frozen birds to directly quantify the fraction of humerus volume occupied by air across a phylogenetically diverse taxon sample to test longstanding hypotheses regarding the evolution and function of avian skeletal pneumatization. Among other insights, we document weak positive allometry of internal air volume with humeral size among pneumatized humeri and provide strong support that humeral size, body mass, aquatic diving, and the presence or absence of pneumaticity all have independent effects on cortical bone thickness. Our quantitative evaluation of humeral pneumaticity across extant avian phylogeny sheds new light on the evolution and ontogenetic progression of an important aspect of avian skeletal architecture, and suggests that the last common ancestor of crown birds possessed a highly pneumatized humerus.


Assuntos
Ar , Evolução Biológica , Aves , Úmero , Animais , Aves/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Microtomografia por Raio-X , Úmero/anatomia & histologia , Úmero/diagnóstico por imagem , Osso Cortical/anatomia & histologia , Osso Cortical/diagnóstico por imagem
11.
Evol Dev ; 25(1): 119-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308394

RESUMO

In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.


Assuntos
Evolução Biológica , Fósseis , Crânio , Animais , Fósseis/anatomia & histologia , Crista Neural/anatomia & histologia , Crânio/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação
12.
Evol Dev ; 24(6): 177-188, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111749

RESUMO

The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.


Assuntos
Artrópodes , Fósseis , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Fósseis/anatomia & histologia , Especificidade da Espécie , Cabeça/anatomia & histologia , Olho/anatomia & histologia
13.
Proc Natl Acad Sci U S A ; 119(32): e2123553119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914174

RESUMO

Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult crania of early Homo sapiens. The endocranial cavities of the Herto individuals show that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that seen in modern human populations. However, endocranial shape differed from ours. This gave rise to the hypothesis that the brain itself evolved substantially during the past ∼200,000 y, possibly in tandem with the transition from Middle to Upper Paleolithic techno-cultures. However, it remains unclear whether evolutionary changes in endocranial shape mostly reflect changes in brain morphology rather than changes related to interaction with maxillofacial morphology. To discriminate between these effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time the first permanent molars fully erupt, but the face and cranial base continue to grow until adulthood. Here we use morphometric data derived from digitally restored immature and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endocranial development in early H. sapiens. Until the completion of brain growth, endocasts of HQS children were similar in shape to those of modern human children. The similarly shaped endocasts of fossil and modern children indicate that our brains did not evolve substantially over the past 200,000 y. Differences between the endocranial shapes of modern and fossil H. sapiens adults developed only with continuing facial and basicranial growth, possibly reflecting substantial differences in masticatory and/or respiratory function.


Assuntos
Evolução Biológica , Fósseis , Desenvolvimento Humano , Crânio , Adulto , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Criança , Etiópia , Fósseis/anatomia & histologia , Humanos , Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento
14.
Proc Natl Acad Sci U S A ; 119(35): e2123366119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994633

RESUMO

Variability in resource availability is hypothesized to be a significant driver of primate adaptation and evolution, but most paleoclimate proxies cannot recover environmental seasonality on the scale of an individual lifespan. Oxygen isotope compositions (δ18O values) sampled at high spatial resolution in the dentitions of modern African primates (n = 2,352 near weekly measurements from 26 teeth) track concurrent seasonal precipitation, regional climatic patterns, discrete meteorological events, and niche partitioning. We leverage these data to contextualize the first δ18O values of two 17 Ma Afropithecus turkanensis individuals from Kalodirr, Kenya, from which we infer variably bimodal wet seasons, supported by rainfall reconstructions in a global Earth system model. Afropithecus' δ18O fluctuations are intermediate in magnitude between those measured at high resolution in baboons (Papio spp.) living across a gradient of aridity and modern forest-dwelling chimpanzees (Pan troglodytes verus). This large-bodied Miocene ape consumed seasonally variable food and water sources enriched in 18O compared to contemporaneous terrestrial fauna (n = 66 fossil specimens). Reliance on fallback foods during documented dry seasons potentially contributed to novel dental features long considered adaptations to hard-object feeding. Developmentally informed microsampling recovers greater ecological complexity than conventional isotope sampling; the two Miocene apes (n = 248 near weekly measurements) evince as great a range of seasonal δ18O variation as more time-averaged bulk measurements from 101 eastern African Plio-Pleistocene hominins and 42 papionins spanning 4 million y. These results reveal unprecedented environmental histories in primate teeth and suggest a framework for evaluating climate change and primate paleoecology throughout the Cenozoic.


Assuntos
Evolução Biológica , Mudança Climática , Fósseis , Isótopos de Oxigênio , Pan troglodytes , Dente , África , Animais , Guiné Equatorial , Fósseis/anatomia & histologia , História do Século XXI , Hominidae/anatomia & histologia , Quênia , Isótopos de Oxigênio/análise , Pan troglodytes/anatomia & histologia , Papio/anatomia & histologia , Primatas/anatomia & histologia , Dente/anatomia & histologia , Dente/química
15.
J Anat ; 241(3): 628-634, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35762030

RESUMO

The exquisite preservation of maxillary and mandibular fragments of Seymouria has allowed us to examine for the first time in detail the dental anatomy and patterns of development in this stem amniote. The results obtained through histological examination show that Seymouria has pleurodont implantation with ankylosis of the tooth to the labial side of the jawbone. The dentary and maxillary teeth exhibit similar dental characteristics, such as the attachment bone (alveolar bone) and cementum rising above the jawbone on the base of the tooth, and smooth carinae extending lingually toward the tooth apex. Additionally, the clear presence of plicidentine, infolding of dentine into the pulp cavity, was found within the tooth root extending into the tooth crown. Lastly, the tooth replacement pattern is alternating, illustrating that Seymouria retains the classic primitive condition for tetrapods, a pattern that is continued in amniotes. Our results provide an important basis for comparison with other stem amniotes and with amniotes.


Assuntos
Anfíbios/anatomia & histologia , Fósseis/anatomia & histologia , Dente/anatomia & histologia , Animais , Mandíbula/anatomia & histologia , Maxila/anatomia & histologia , Odontogênese/fisiologia , Dente/fisiologia
16.
J Anat ; 241(3): 616-627, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35445396

RESUMO

Serving in a foraging or self-defense capacity, pristiophorids, pristids, and the extinct sclerorhynchoids independently evolved an elongated rostrum lined with modified dermal denticles called rostral denticles. Isolated rostral denticles of the sclerorhynchoid Ischyrhiza mira are commonly recovered from Late Cretaceous North American marine deposits. Although the external morphology has been thoroughly presented in the literature, very little is known about the histological composition and organization of these curious structures. Using acid-etching techniques and scanning electron microscopy, we show that the microstructure of I. mira rostral denticles are considerably more complex than that of previously described dermal denticles situated elsewhere on the body. The apical cap consists of outer single crystallite enameloid (SCE) and inner bundled crystallite enameloid (BCE) overlying a region of orthodentine. The BCE has distinct parallel bundled enameloid (PBE), tangled bundled enameloid (TBE), and radial bundled enameloid (RBE) components. Additionally, the cutting edge of the rostral denticle is produced by a superficial layer of SCE and a deeper ridges/cutting edge layer (RCEL) of the BCE. The highly organized enameloid observed in the rostral denticles of this batomorph resembles that of the multifaceted tissue architecture observed in the oral teeth of selachimorphs and demonstrates that dermal scales have the capacity to evolve histologically similar complex tooth-like structures both inside and outside the oropharyngeal cavity.


Assuntos
Fósseis/anatomia & histologia , Orofaringe/anatomia & histologia , Dente/anatomia & histologia , Fósseis/ultraestrutura , Microscopia Eletrônica de Varredura , Orofaringe/ultraestrutura , Dente/ultraestrutura
17.
Sci Rep ; 12(1): 1660, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102237

RESUMO

We here report on a well-preserved juvenile lizard specimen in Albian amber (ca. 110 mya) from the Hkamti site (Myanmar). This new taxon is represented by an articulated skull and the anterior portion of the trunk, including the pectoral girdle and forelimbs. The scleral ossicles and eyelid are also visible, and the specimen exhibits pristine detail of the integument (of both head and body). In a combined molecular and morphological analysis, it was consistently recovered as a scincoid lizard (Scinciformata), as sister to Tepexisaurus + Xantusiidae. However, the phylogenetic position of the new taxon should be interpreted with caution as the holotype is an immature individual. We explored the possibility of miscoding ontogenetically variable characters by running alternative analyses in which these characters were scored as missing data for our taxon. With the exception of one tree, in which it was sister to Amphisbaenia, the specimen was recovered as a Pan-xantusiid. Moreover, we cannot rule out the possibility that it represents a separate lineage of uncertain phylogenetic position, as it is the case for many Jurassic and Cretaceous taxa. Nonetheless, this fossil offers a rare opportunity to glimpse the external appearance of one group of lizards during the Early Cretaceous.


Assuntos
Âmbar , Fósseis/anatomia & histologia , Tegumento Comum/anatomia & histologia , Lagartos/anatomia & histologia , Animais , Evolução Biológica , Fósseis/diagnóstico por imagem , Tegumento Comum/diagnóstico por imagem , Lagartos/genética , Mianmar , Filogenia , Microtomografia por Raio-X
18.
Anat Rec (Hoboken) ; 305(10): 2980-3001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35202518

RESUMO

The lower jaw of early tetrapods is composed of several intramembranous ossifications. However, a tendency toward the independent reduction of the number of bones has been observed in the mandible of mammals, lepidosaurs, turtles, crocodiles, and birds. Regarding archosaurs, the coronoid and prearticular bones are interpreted to be lost during the evolution of stem-birds and stem-crocodiles, respectively, but the homology of the post-dentary bones retained in living pseudosuchians remains unclear. Here, we combine paleontological and embryological evidence to explore in detail the homology of the crocodylian post-dentary bones. We study the mandible embryogenesis on a sample of 71 embryos of Caiman and compare this pattern with the mandibular transformations observed across pseudosuchian evolution. In the pre-hatching ontogeny of caimans, at least five intramembranous ossification centers are formed along the margins of the internal mandibular fenestra (perifenestral centers) and, subsequently, merge to form the coronoid (three intramembranous centers), angular (one intramembranous center), and articular (one intramembranous and one chondral center). In the fossil record, an independent prearticular is lost around the base of Mesoeucrocodylia (optimized as reappearing in Thalattosuchia if they are placed within Neosuchia), and the coronoid is apomorphically lost in notosuchians. The integration of embryological and paleontological data indicates that most perifenestral centers are involved in the origin of the prearticular of non-mesoeucrocodylian pseudosuchians. These centers are rearranged during the evolution to contribute to different post-dentary bones in mesoeucrocodylians bolstering the idea that the coronoid and the articular of Crocodylia are not completely homologous to those of other diapsids.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Fósseis/anatomia & histologia , Mandíbula/anatomia & histologia , Jacarés e Crocodilos/embriologia , Animais , Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Mandíbula/embriologia
19.
Commun Biol ; 5(1): 14, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013524

RESUMO

Pivotal anatomical innovations often seem to appear by chance when viewed through the lens of the fossil record. As a consequence, specific driving forces behind the origination of major organismal clades generally remain speculative. Here, we present a rare exception to this axiom by constraining the appearance of a diverse animal group (the living Ophiuroidea) to a single speciation event rather than hypothetical ancestors. Fossils belonging to a new pair of temporally consecutive species of brittle stars (Ophiopetagno paicei gen. et sp. nov. and Muldaster haakei gen. et sp. nov.) from the Silurian (444-419 Mya) of Sweden reveal a process of miniaturization that temporally coincides with a global extinction and environmental perturbation known as the Mulde Event. The reduction in size from O. paicei to M. haakei forced a structural simplification of the ophiuroid skeleton through ontogenetic retention of juvenile traits, thereby generating the modern brittle star bauplan.


Assuntos
Evolução Biológica , Equinodermos/anatomia & histologia , Meio Ambiente , Fósseis/anatomia & histologia , Animais , Equinodermos/classificação , Traços de História de Vida , Filogenia , Suécia
20.
Sci Rep ; 12(1): 144, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996895

RESUMO

Nodosauridae is a group of thyreophoran dinosaurs characterized by a collar of prominent osteoderms. In comparison to its sister group, the often club-tailed ankylosaurids, a different lifestyle of nodosaurids could be assumed based on their neuroanatomy and weaponry, e.g., regarding applied defensive strategies. The holotype of the nodosaurid Struthiosaurus austriacus consists of a single partial braincase from the Late Cretaceous of Austria. Since neuroanatomy is considered to be associated with ecological tendencies, we created digital models of the braincase based on micro-CT data. The cranial endocast of S. austriacus generally resembles those of its relatives. A network of vascular canals surrounding the brain cavity further supports special thermoregulatory adaptations within Ankylosauria. The horizontal orientation of the lateral semicircular canal independently confirms previous appraisals of head posture for S. austriacus and, hence, strengthens the usage of the LSC as proxy for habitual head posture in fossil tetrapods. The short anterior and angular lateral semicircular canals, combined with the relatively shortest dinosaurian cochlear duct known so far and the lack of a floccular recess suggest a rather inert lifestyle without the necessity of sophisticated senses for equilibrium and hearing in S. austriacus. These observations agree with an animal that adapted to a comparatively inactive lifestyle with limited social interactions.


Assuntos
Encéfalo/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Crânio/anatomia & histologia , Animais , Comportamento Animal , Evolução Biológica , Encéfalo/diagnóstico por imagem , Ecossistema , Fósseis/diagnóstico por imagem , Movimentos da Cabeça , Neuroanatomia , Paleontologia , Postura , Comportamento Sedentário , Canais Semicirculares/anatomia & histologia , Canais Semicirculares/diagnóstico por imagem , Crânio/diagnóstico por imagem , Interação Social , Especificidade da Espécie , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...